Addition, subtraction, multiplication and division of tensors

problem description

I don"t know what"s wrong with the examples in the book

the environmental background of the problems and what methods you have tried

related codes

/ / Please paste the code text below (do not replace the code with pictures)
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

num_epochs = 5
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
echo_step = 3

batch_size = 5

total_series_length = 50000
num_batches = total_series_length//batch_size//truncated_backprop_length

def plot (loss_list, predictions_series, batchX, batchY):

plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)

for batch_series_idx in range(batch_size):
    one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
    single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])
    plt.subplot(2, 3, batch_series_idx + 2)
    plt.cla()
    plt.axis([0, truncated_backprop_length, 0, 2])
    left_offset = range(truncated_backprop_length)
    left_offset2 = range(echo_step, truncated_backprop_length + echo_step)
    
    label1 = "past values"
    label2 = "True echo values"
    label3 = "Predictions"
    
    plt.plot(left_offset2, batchX[batch_series_idx, :] * 0.2 + 1.5, "o--b", label = label1)
    plt.plot(left_offset, batchY[batch_series_idx, :] * 0.2 + 0.8, "x--b", label = label2)
    plt.plot(left_offset, single_output_series * 0.2 + 0.1, "o--y", label = label3)
    
plt.legend(loc = "best")
plt.draw()
plt.pause(0.0001)

def generateData ():

x = np.array(np.random.choice(2, total_series_length, p = [0.5, 0.5]))
y = np.roll(x, echo_step)
y[0:echo_step] = 0

x = x.reshape((batch_size, -1))
y = y.reshape((batch_size, -1))

return (x, y)

batchX_placeholder = tf.placeholder (tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder (tf.int32, [batch_size, truncated_backprop_length])
init_state = tf.placeholder (tf.float32, [batch_size, state_size])

inputs_series = tf.unstack (batchX_placeholder, axis = 1)
labels_series = tf.unstack (batchY_placeholder, axis = 1)

current_state = init_state
predictions_series = []
losses = []

for current_input, labels in zip (inputs_series, labels_series):

current_input = tf.reshape(current_input, [batch_size, 1])
input_and_state_concatenated = tf.concat([current_input, current_state], 1)
next_state = tf.contrib.layers.fully_connected(input_and_state_concatenated, state_size, activation_fn = tf.tanh)
current_state = next_state
logits = tf.contrib.layers.fully_connected(next_state, num_classes, activation_fn = None)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels = labels, logits = logits)
losses.append(loss)


predictions = tf.nn.softmax(logits)
predictions_series.append(predictions)

total_loss = tf.reduce_mean (losses)
train_step = tf.train.AdagradOptimizer (0.3) .minimize (total_loss)

with tf.Session () as sess:

sess.run(tf.global_variables_initializer())
plt.ion()
plt.figure()
plt.show()
loss_list = []

for epoch_idx in range(num_epochs):
    x, y = generateData()
    _current_state = np.zeros((batch_size, state_size))
    
    print("New data, epoch", epoch_idx)
    
    for batch_idx in range(num_batches):
        start_idx = batch_idx * truncated_backprop_length
        end_idx = start_idx + truncated_backprop_length
        
        batchX = x[:, start_idx: end_idx]
        batchY = y[:, start_idx: end_idx]
        
        _total_loss, _train_step, _current_state, _predictions_series = sess.run(
                                                                                 [total_loss, train_step, current_state, predictions_series],
                                                                                 feed_dict = {
                                                                                              batchX_placeholder:batchX, 
                                                                                              batchY_placeholder:batchY,
                                                                                              init_state:current_state
                                                                                            }
                                                                                )
        
        loss_list.append(_total_loss)
        if batch_idx % 100 == 0:
            print("Step", batch_idx, "Loss", _total_loss)
            plot(loss_list, _predictions_series, batchX, batchY)

plt.ioff ()
plt.show ()

what result do you expect? What is the error message actually seen?

TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, numpy ndarrays, or TensorHandles.For reference, the tensor object was Tensor ("fully_connected_216/Tanh:0", shape= (5,4), dtype=float32) which was passed to the feed with key Tensor ("Placeholder_44:0", shape= (5,4), dtype=float32).
this error does not understand

Jun.17,2021
Menu