Why do two identical list to np.array, data types become object, and the other float??

Why do two list-to-np.array, datatypes of exactly the same type become object, and the other floatable!

print(len(X_l)) -sharp 2013
print(len(X_s)) -sharp 1980
print(X_l[0].dtype)  -sharp float64
print(X_s[0].dtype)  -sharp float64
print(X_l[0].shape)  -sharp (384, 448, 1)
print(X_s[0].shape)  -sharp (384, 448, 1)

X_l = np.array(X_l)
X_s = np.array(X_s)

print(type(X_l[0]))  -sharp <class "numpy.ndarray">
print(type(X_s[0]))  -sharp <class "numpy.ndarray">

print(X_l.dtype) -sharp  object
print(X_s.dtype) -sharp  flaot64
print(X_l.shape) -sharp 2013
print(X_s.shape) -sharp 1980, 384, 448, 1
Nov.08,2021

< H2 > is it feasible to use cast < / H2 >
import numpy as np


li1 = [1.0,2.0]
li2 = [1.0,2.0]


li1_1 = np.array(li1)
li2_1 = np.array(li2,dtype=object)

print(li1_1.dtype)
print(li1_1.dtype)
print(type(li1_1))
print(type(li2_1))

print(li1_1.dtype)
print(li2_1.dtype)

-sharp 
li2_1_1 = np.array(li2_1,dtype=float)
print(li2_1_1.dtype)
Menu