Error when checking target: expected dense_3 to have 2 dimension

problem description

use Tensorflow"s keras to deal with a text emotion multi-classification problem, but there are some inexplicable problems when building the model?
Error when checking target: expected dense_3 to have 2 dimensions, but got array with shape (4500, 4, 4)

the environmental background of the problems and what methods you have tried

Layer (type)                 Output Shape              Param -sharp   
=================================================================
lstm_9 (LSTM)                (150, 1, 32)              772224    
_________________________________________________________________
lstm_10 (LSTM)               (150, 1, 32)              8320      
_________________________________________________________________
lstm_11 (LSTM)               (150, 32)                 8320      
_________________________________________________________________
dense_3 (Dense)              (150, 4)                  132       
=================================================================
Total params: 788,996
Trainable params: 788,996
Non-trainable params: 0

it"s strange that the output from the upper layer of dense_3 is 2 dimensions, so why do you still report an error that does not conform to dim?

related codes

/ / Please paste the code text below (do not replace the code with pictures)

timesteps = 1
data_dim = 6000
num_classes = 4
batch_size = 150

x_train = train_x_array
x_val = val_x_array

x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=6000, value=0)
x_val = keras.preprocessing.sequence.pad_sequences(x_val, maxlen=6000, value=0)
print("x_train shape: {}".format(x_train.shape))
print("x_val shape: {}".format(x_val.shape))

x_train = x_train.reshape([batch_size * 30, timesteps, data_dim])
x_val = x_val.reshape([batch_size * 10, timesteps, data_dim])
print("x_train shape: {}".format(x_train.shape))
print("x_val shape: {}".format(x_val.shape))

// x_train shape: (4500, 6000)
// x_val shape: (1500, 6000)
// x_train shape: (4500, 1, 6000)
// x_val shape: (1500, 1, 6000)

model = Sequential()
model.add(LSTM(32, return_sequences=True, stateful=True,
               batch_input_shape=(batch_size, timesteps, data_dim)))
model.add(LSTM(32, return_sequences=True, stateful=True))
model.add(LSTM(32, stateful=True))
model.add(Dense(4, activation="softmax"))

model.compile(loss="categorical_crossentropy",
              optimizer="adam",
              metrics=["accuracy"])

model.summary()

model.fit(x_train, y_train,
          batch_size=batch_size, epochs=3, shuffle=False,
          validation_data=(x_val, y_val))

how to solve this problem?

Apr.05,2022

have you solved it? I have the same question

MySQL Query : SELECT * FROM `codeshelper`.`v9_news` WHERE status=99 AND catid='6' ORDER BY rand() LIMIT 5
MySQL Error : Disk full (/tmp/#sql-temptable-64f5-1bc2e20-45675.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")
MySQL Errno : 1021
Message : Disk full (/tmp/#sql-temptable-64f5-1bc2e20-45675.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")
Need Help?