Pandas's dataframe condition Filter performance Optimization?

currently I have a piece of code that spends most of its time on the above two sentences of data filtering in dataframe.
temp_df = df [df ["data_date"] .isin (date_list)]
temp = temp_df [rule [2]] [temp_df ["data_date"] = = d]

at present, it takes about 30-50 seconds to execute the filter rule with only four conditions. Is there any good optimization method?
because more than 10 or more rule may be added later for comprehensive filtering.

attached code and performance data

Function: digg_data_byrule at line 56

Line -sharp      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    56                                           def digg_data_byrule(df,rules):
    57      1546       1398.0      0.9      0.0          info=""
    58      7730       6465.0      0.8      0.0          for rule in rules:
    59      6184    2076181.0    335.7      9.4              date_list=utils.datelist(rule[0],rule[1])
    60      6184       9205.0      1.5      0.0              days = len(date_list)
    61      6184    4966183.0    803.1     22.6              temp_df = df[df["data_date"].isin(date_list)]
    62      6184       7782.0      1.3      0.0              flag = False
    63      6184      20854.0      3.4      0.1              if len(temp_df) == days:
    64      3100       2613.0      0.8      0.0                  temp_array = []
    65     16960      13525.0      0.8      0.1                  for d in date_list:
    66     13860   14703156.0   1060.8     66.9                      temp = temp_df[rule[2]][temp_df["data_date"] == d]
    67     13860      72778.0      5.3      0.3                      if len(temp) > 0:
    68     13860      62733.0      4.5      0.3                          temp_array.append(temp.values[0])
    69      7102       8265.0      1.2      0.0                  for i in range(len(temp_array)):
    70      7048       4693.0      0.7      0.0                      if i > 0:
    71      3948       9257.0      2.3      0.0                          if (temp_array[i] - temp_array[i - 1]) / temp_array[i - 1] > rule[4]:
    72       902        608.0      0.7      0.0                              flag = True
    73                                                                   else:
    74      3046       1805.0      0.6      0.0                              flag = False
    75      3046       2206.0      0.7      0.0                              break
    76      6184       4376.0      0.7      0.0              if flag==True:
    77        54        181.0      3.4      0.0                  info += "%s:%s:%d:%.2f;" % (rule[3], rule[2], len(date_list), rule[4])
    78      1546        874.0      0.6      0.0          return info

Total time: 40.1706 s
File: test.py
Function: main_test at line 16
def digg_data2(df,rules):
    temp_df= df.groupby("product_id").apply(digg_data_byrule,rules)
    temp_df=temp_df[temp_df!=""].reset_index()
    temp_df.rename(columns={0:"flag"},inplace=True)
    temp_df=temp_df.set_index("product_id")
    return temp_df.to_dict("index")
    

def digg_data_byrule(df,rules):
    info=""
    for rule in rules:
        date_list=utils.datelist(rule[0],rule[1])
        days = len(date_list)
        temp_df = df[df["data_date"].isin(date_list)]
        flag = False
        if len(temp_df) == days:
            temp_array = []
            for d in date_list:
                temp = temp_df[rule[2]][temp_df["data_date"] == d]
                if len(temp) > 0:
                    temp_array.append(temp.values[0])
            for i in range(len(temp_array)):
                if i > 0:
                    if (temp_array[i] - temp_array[i - 1]) / temp_array[i - 1] > rule[4]:
                        flag = True
                    else:
                        flag = False
                        break
        if flag==True:
            info += "%s:%s:%d:%.2f;" % (rule[3], rule[2], len(date_list), rule[4])
    return info


rules = [
        (max_date - timedelta(days=5), max_date, "product_add_cart", "increase_percent", 0.25),
        (max_date - timedelta(days=5), max_date, "amount", "increase_percent", 0.25),
        (max_date - timedelta(days=2), max_date, "product_add_cart", "increase_percent", 0.15),
        (max_date - timedelta(days=2), max_date, "amount", "increase_percent", 0.15),
    ]
    
    data = pd.read_sql(sql, db.engine)
    data = data.groupby(["data_date", "product_id"]).sum().reset_index()
    temp1 = digg_data2(data, rules)
Feb.26,2021
MySQL Query : SELECT * FROM `codeshelper`.`v9_news` WHERE status=99 AND catid='6' ORDER BY rand() LIMIT 5
MySQL Error : Disk full (/tmp/#sql-temptable-64f5-1b22667-2b609.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")
MySQL Errno : 1021
Message : Disk full (/tmp/#sql-temptable-64f5-1b22667-2b609.MAI); waiting for someone to free some space... (errno: 28 "No space left on device")
Need Help?